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Reflexion of water waves by a permeable barrier 

By C. MACASKILL 
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(Received 16 December 1978) 

The linearized problem of water-wave reflexion by a thin barrier of arbitrary .per- 
meability is considered with the restriction that the flow be two-dimensional. The 
formulation includes the special case of transmission through one or more gaps in an 
otherwise impermeable barrier. The general problem is reduced to a set of integral 
equations using standard techniques. These equations are then solved using a special 
decomposition of the finite depth source potential which allows accurate solutions to 
be obtained economically. A representative range of solutions is obtained numerically 
for both finite and infinite depth problems. 

1. Introduction 
This paper deals with the transmission and reflexion of surface waves incident on 

an infinitely thin vertical barrier, in water of finite depth. Only the two-dimensional 
problem is considered. The barrier is assumed to have some known permeability, that 
may vary with depth. This permeability may be identified as 1/C, where C is a non- 
dimensional blockage coefficient dependent only on the geometrical dimensions of 
the barrier (the blockage coefficient concept is discussed in Tuck (1975) chapter 5).  

I n  other words, we may regard the barrier as being perforated by many small pores, 
with the pores being small when C is large (i.e. low permeability) and large when C 
is small (high permeability). 

I n  small-amplitude unsteady flows, such as those we are dealing with here, the 
Bernoulli equation may be linearized. This implies that the acceleration of the fluid 
across the porous barrier is proportional to the pressure jump across it, specifically, 

where p is the density of the fluid, a, is the fluid acceleration, A p  is the pressure jump 
and C is the blockage coefficient referred to above. I n  time-sinusoidal flows with a 
(suppressed) time-dependence e-iut, we know that a, = iuV,  where V is the (local) 
streaming velocity through the barrier, so that (1.1) becomes 

which is of similar form to the well-known Darcy law for flow in porous media (Morse 
& Ingard 1968, p. 252)  
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where k is the Darcy coefficient. This quantity is usually determined experimentally 
and determines the dissipation due to viscous effects. C will be real in an inviscid fluid, 
so that inclusion of this quantity measures local inertial effects a t  the barrier. However, 
if we use the results of Macaskill & Tuck (1978) where both real and imaginary parts 
for C are obtained for a porous screen, we see that viscous effects may also be included. 
This means that we have available a quantity akin to a Darcy constant which may be 
determined theoretically for any viscosity, frequency or ratio of pore size to pore 
separation. In  water wave problems, viscous dissipation is generally of minor im- 
portance, but the same is not true for the inertial impedance of the barrier. The method 
presented in this paper allows the comparison of the efficiency of, say, a loosely packed 
submerged breakwater with a completely solid one. The main drawback with the 
method is that thickness effects cannot be modelled, although it could possibly be 
modified to allow this. 

Using a variable permeability also allows the determination of results for solid 
obstacles with one or more large gaps. One example of such a problem is that treated 
by Ursell(l947).  This problem was that of reflexion of surface waves, in infinite water 
depth, by a single surface-piercing barrier reaching partway to the bottom. This 
corresponds to our general variable permeability formulation with C = co on the 
barrier and C = 0 everywhere else. In  a similar fashion the barrier reaching partway 
to the surface, treated by Dean (1945), may also be considered. In  finite depth, these 
two problems have been solved (numerically) by Mei & Black (1969). Again, the 
method described here may be used for verifying and extending the results. 

Problems of flow through one or more gaps have been treated by several authors. 
All previous work, with one exception, has dealt with infinite water depth. The excep- 
tion is the solution for flow through a single small gap, in finite depth, due to Packham 
& Williams (1972). Tuck (1975) gives a slightly different but equivalent formulation 
for this problem, and obtains the same results. 

In  infinite water depth, reflexion by a barrier with any number of gaps has been 
treated by both Lewin (1963) and Mei (1966). The solutions obtained are extremely 
complicated, however, and in both cases no numerical results are presented. For a 
single gap, both Guiney (1972) and Porter (1972) have obtained solutions and they 
both present comprehensive results, but a large amount of numerical integration is 
involved. More recently, Porter (1974) has presented a simpler method than those 
of Lewin (1963) and Mei (1966) for the general problem of an arbitrary number of 
gaps. Again, though, no numerical results are presented. 

All the above problems are included in the present formulation. In  presenting our 
results for problems with more than one gap, however, only the problem with two 
gaps of equal size, in water of infinite depth, is used. This is merely to reduce the 
number of parameters in the problem (e.g. gap width/gap separation, gap width/mean 
depth of submersion of two gaps etc.) so that some valid conclusions may be drawn. 
The method is easily applicable to more than two gaps (at the expense of a small 
increase in computing time) but to give a proper coverage of results for such problems 
would be extremely laborious and would convey very little extra information. 
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FIGURE 1. Schematic diagram of the permeable barrier. 

2. Mathematical formulation 
A similar formulation to the following was outlined briefly by Tuck (1975) for the 

thin barrier problem in water of infinite depth. In the present work it is assumed that 
the depth is finite, but is everywhere constant. In  the limit as the depth approaches 
infinity, it  is shown that Tuck's result is regained. 

Cartesian co-ordinates x and y are used (see figure 1). The fluid is assumed non- 
viscous and the flow irrotational, so that a velocity potential @(x, y,  t) exists which 
satisfies Laplace's equation, 

everywhere in the fluid. 

$(x, y )  may be introduced, where 

V2@ = 0, (2.1) 

Sinusoidal time-dependence is assumed so that a complex-valued potential function 

@(G Y ,  t )  = Re w., Y )  f 3 - T  (2.2) 

and c is the wave frequency. 

condition may be used, that is 
Since the waves are assumed to be of small amplitude, the linearized free surface 

a 4 p y  - v4 = 0, y = 0, (2.3) 

where v = a 2 / g  and g is the acceleration due to gravity. There must also be no normal 
fluid velocity on the bottom y = - h, so that 

a$/ay = 0, -CO < x < CO. (2.4) 

Plane progressive waves of unit amplitude are incident from x = -a, so that 4 

(2.5) 
takes the form cosh K ( y  + h) 

cosh Kh 
$ -+ (eiKx+ Re-iKx) 

and 
cosh K ( y  + h)  

cosh Kh 
$ + re iKx  

where R and r are the complex-valued reflexion and transmission coefficients. K is 
the characteristic wavenumber for waves of frequency CT in water of depth h, given by 

v = K tanh Kh. (2.7) 

It is also necessary to define a Green's function G(x, y ;  5 , ~ )  satisfying the boundary 
conditions (2.3) and (2.4)) and the equation 

V2G = ~ ( x - ~ J ~ ( Y - Y ) .  (2.8) 
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G must also satisfy suitable radiation conditions at x = _+ CO; specifically, i t  should 
behave like an outgoing wave. Several forms for G may be found in Wehausen & 
Laitone (1960), p. 483 - we postpone discussion of the most suitable choice. 

If Green's theorem is now applied to the circuit C,, on the right-hand side of the 
barrier in figure 1, then 

(2.9) 
aG a4 4(t, a)  = $ 4(x, Y) (x, Y; 5,a) - Q(x, Y; t, 71% (5, Y) dl.  

Cl 

The only contribution to the integral in (2.9) comes from the arc - h < y < 0 , x  = 0,. 
There is no contribution from the free surface or the bottom, since both (p and G satisfy 
(2.3) and (2.4). At x = co, since both 4 and G behave like outgoing waves, there is 
again no contribution to the integral. Thus (2.9) becomes 

(2.10) 
O a4 aG 

4(L a )  = & ( O + ,  Y) o,, Y; L a )  - 4P+, Y) (O+, Y; C a ) d Y .  

If we apply Green's theorem over the circuit C, we obtain in a similar manner 

In  this case there is a contribution from the part of the circuit a t  x = --a since (p 
has an incoming component. Specifically, this contribution is 

cosh K(7 + h) eiKc 
"= coshKh . (2.12) 

In  equations (2.10) and (2.11), we have available solutions for x 2 0 and x 6 0 
separately. To complete this formulation we need to match the two equations across 
x = 0. Since aG/ax behaves like a delta function as 5 -+ x, (2.10) becomes, with C; i. 0,, 

(2.13) 

while (2.11) reduces to 

a4co-, a )  = 4,(0-, 7) -1 O - a4 (0-9 Y) G(O-7 Y; 0-2 7)dY (2.14) 

as [ -+ 0. To obtain a final integral equation from (2.12) and (2.13) requires some form 
of matching condition across x = 0, - h < y < 0. Problems where the barrier is made 
up of impermeable material perforated by large totally permeable gaps are easily 
treated and we therefore consider these first. We refer to figure 2. 

Across all open sections y E L,, m. = 1,  . , . ,1M, there is no flow restriction across 
x = 0,  so that 

-h ax 

(2.15) 

For all other points on x = 0, there is no flow a t  all, since the barrier is totally im- 
permeable. This means that the normal velocity across the barrier must be zero at  
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FIGURE 2. Schematic diagram of a many-gap barrier. 

these points, although there may be a discontinuity in the potential function. This 
condition we write as 

-(O,,y) a4 =,,(O-,y) a4 = 0, ye&, x = 0. (2.17) 

On using these conditions, and observing that the Green’s function G is continuous 

ax 

across x = 0, we may reduce (2.13) and (2.14) to the single integral equation 

(2.18) 

This equation may be discretized and solved numerically for any barrier configuration 
that may be described as a series of disconnected arcs L,. The problems treated by 
Porter (1972), Dean (1945) and Ursell (1947), for example, may all be treated in this 
way. 

The problem becomes more involved if the permeability is no longer either zero or 
infinite as in the above examples. There is now the possibility of an effective potential 
jump across x = 0 at’ points where the velocity is non-zero. Subtracting (2.14) from 
(2.13) gives 

A 4  = 4(0+,7) - &0-,7) 

I n  this equation we have implicitly assumed the continuity of G and $o across x = 0. 
It now is necessary to  use the concept of a blockage coefficient G ,  as defined in the 
introduction. For non-zero finite permeability, the barrier a t  x = 0 may be considered 
to be perforated by some (assume given) array of small pores. The local flow a t  any 
point on x = 0 may then be regarded as unsteady streaming flow through a screen. 
At each point y on x = 0 the screen will have some local permeability or blockage 
coefficient C(y) .  At a distance from the barrier that is large compared with the average 
pore size, but still is small when compared with all other dimensions in the problem, 
the flow will tend to 

4(x> Y )  + U(Y) 2 + U(Y) C(Y) sgn x ,  (2.20) 

where U ( y )  is the streaming velocity appropriate for any point (0, y) .  Since the dis- 
tance from the barrier is still small, in terms of the outer flow, U may be recognized as 

u = 4aiO+,Y)  = $z(O-,Y) = # Z ( O , Y ) *  (2.21) 
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This means that there is no jump in velocity across the barrier as far as the outer flow 
pattern is concerned. By (2.20)) however, there is a jump in the velocity potential, 
given by 

so that (2.19) becomes 
(2.22); 

(2.23) 

4 = 2 M 0 ,  Y) C(Y) 

M O ,  7) C ( r )  + #do, r )  = 2J0 G(O, 0 , r ) z  a$ (07 Y) &I. 
-h 

It must be noted that for validity of the above reasoning, the length scale for variation 
in C(y) must be much larger than the length scale for the pores in the breakwater. It) 
should be noted, too, that viscous dissipative effects may be included by introducing 
an imaginary component in the bIockage coefficient. 

Since C(y) is assumed known (determined theoretically perhaps as in Macaskill & 
Tuck (1977) or obtained experimentally), equation (2.23) constitutes an integral 
equation of the second kind in the normal velocity across x = 0. 

Equation (2.18) may also be regarded as a special case of (2.23). For 

YEL,, m = 1 ,..., M ,  

the blockage coefficient is zero. For all other points the normal velocity is zero. Using 
these two facts, we may immediately recover (2.18) from (2.23). 

Finally, Tuck’s (1  975) infinite depth formulation may be recovered by allowing 
h + co in (2.23) so that 

where G ,  is the limiting form of G as h -+ co. This limiting form is well known, and is 
indeed a great deal simpler than G for finite depth. Thus, for problems where the depth 
is very large, the infinite depth Green’s function will be used (see Wehausen and Laitone, 
1960). 

3. Numerical anaIysis 
There are now two forms of the integral equation that may be used, depending on 

the nature of the breakwater, namely (2.18) and (2.23). 
First we consider the numerical solution of equation (2.23). We use a simple collo- 

cation method first proposed by Tuck (1969) and since then used with success by 
o thers. 

In  (2.23) we assume that q5x is slowly varying a t  x = 0. We divide the arc x = 0, 
0 2 y 2 - h into N segments (yj, yi+l) with yj > y > j = 1)  ..., N .  Then, the 
approximation q5,(O,y) = = constant is made. We must now make a choice of 
meshpoints. So long as the blockage coefficient C(y) is slowly varying, the obvious 
choice is a uniform distribution of points. For the special case described by equation 
(2.18)) where we have introduced sharp corners at the end of each arc L,, we may 
make a better choice. We know that in the near vicinity of these corners the velocity 
potential has a square-root singularity, so on L, = (a,, p,), for example, we take 

y3,, = em+ [sin:(&)] (pm-cr,), j = 1) 2, ...) N +  1 with k = 2( j -  1)-N. 

(3.1) 
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These Chebychev points automatically account for the expected square root singu- 
larity in the velocity at these corners. It should be noted that a separate set of mesh- 
points Y ~ , ~ ,  j = I ,  . .., N ,  is required for each arc L,. 

We satisfy the integral equation a t  the N points 

i = 1, ..., N ,  

for problems with slowly varying C(y). For problems involving one or more large 
gaps, as described by equation (2.18), we choose 

vi,, =arn+ sm- - (pm-am), i = 1, ..., N with k = 2 i - l - N ,  (3.3) [ .  %)I 
which is consistent with the choice of meshpoints y, in equation (3.1). 

With these assumptions, (2.23) may be written in discrete form as 

where Qoi represents the obvious discretization q50(0,yi). In  a similar way we may 
write (2.181 as 

f o r i =  I ,..., N ; m =  1 ,..., M .  
Thus (3.4) becomes A** = a,, 

where A* = 2[A,,] - [cisij], (3-7) 

and 

and *o = ($019 . . . 7 (3.10) 

Equation (3.5) may be represented in similar fashion. It should be noted in (3.5) 
that increasing the number of gaps generally increases the amount of computing time 
required to solve the problem, since introducing extra singularities (by way of more 
corners) will increase the number of points required to obtain satisfactory accuracy. 

Once we have the problem in the form (3.6),  with ( A i j )  known, we can find the 
normal velocity through the gap by inverting the matrix equation. Once the normal 
velocity has been obtained, the transmission and reflexion coefficients may be obtained 
from the original integral equations, using the limiting form as 

The only remaining problem is the actual evaluation of the elements Aij. We 
consider the general problem of evaluating the finite depth Green’s function in the 
next section. In the special case when the depth is infinite, or very large, it  is more 
desirable to use the infinite-depth Green’s function. For these problems we truncate 
the range of integration from the interval (0 ,  - a) to say (0 ,  - h*). Our choice of mesh 
points is now the same as for finite depth problems with h* replacing h. This means 
that we are actually assuming a solid barrier for y < - h*. In  practice this should not 

+ f- CO. 
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affect the transmission, so long as h* is chosen large enough, as there is exponential 
decay in the wave motion of the form e g g .  The only other change we make is in the 
evaluation of the elements A,,, which now become 

~ i j  =z / ;+ 'G, (O,  yj; 0, 7,) dy, (3.11) 

where G, is the infinite depth Green's function referred to in $2.  A convenient form 
of this function is 

We may immediately write Ai as 

On interchanging the order of integration in the integral in (3.13) we may finally 
determine A,, as 

Here =(x) is the exponential integral (see Abramowitz & Stegun 1964). This function 
may be quickly and easily computed for all values of its argument with the use of 
polynomial approximations. 

4. Evaluation of the Green's function 
In determining the elements Aij we require an efficient method for evaluating the 

indefinite integral of the finite depth Green's function. This section details such a 
method. An alternative approach would be to determine a good way of finding the 
function itself, rather than its integral, and then to use numerical integration to 
obtain the matrix elements Aij.  Although the present problem has been set up so 
as to avoid this numerical integration, in many other problems this cannot be done. 
Thus an efficient method for evaluating the Green's function itself is also of interest. 
For example, Sheridan ( 1975) describes a straightforward method for determining 
the Green's function. It is thought that the method described here is a distinct im- 
provement, especially in the present case where we are interested in x = 5 = 0. 

Two forms of the Green's function are available. One is an integral representation 

- 1 1; ( e-kh G, cosh k(h + y)  cos k(x - 6) - dlc - iG, cos K ( x  - E )  cosh K(y  + h), 
(4.1) 

k 7T 

where 
v + K e-Kh sinh kH cosh K(h + 7) 

vh + sinh2 Kh G, = 7 



and 

ReJexion of water waves by a permeable barrier 

B -  k ksinhkh-vcoshkh‘ 
v + k cosh k(h + 7) 

G -  
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(4.3) 

Alternatively, the function can be expressed in terms of the series expansion 

OD 

G(x,Y; 5 , ~ ;  h) = - Z Pn cosmn(y+ h)exp [ -m,Ix- 611 
It= 1 

- iG, exp [ + iKlx - LJ] cosh K(y + h), (4.4) 

where GA is given by equation (4.2) and 

cos m,(y + h). p , = L  m2,+v2 
m, hmi + hv2 - v (4.5) 

The m,’a, n = 1,  . . . , 03, are the real roots of the equation 

-m,tanm,h = v. (4.6) 

For a derivation of the above forms and other alternative formulations, reference 
should be made to either Wehausen and Laitone (1960) or Thorne (1953). 

= 0 equation (4.4) takes on a very simple form. It is not, 
however, particularly suitable for numerical computations, as it is extremely slowly 
convergent [this is due to the presence of the logarithmic singularities shown explicitly 
in equation (4.1)]. The integral form, by contrast, does not pose this problem but we 
do have to deal with an oscillatory integral over an infinite range of integration (the 
singularity poses few problems). This integral can be evaluated numerically with 
some success but it is difficult to obtain high accuracy and such methods are not very 
efficient. 

We find that a more economical procedure is to rearrange equation (4.4) so that 
the logarithmic singularity appears explicitly. Convergence is then rapidly obtained 
without the attendant complications involved when using the integral representation. 

In  the special case x = 

We rewrite (4.4) for convenience as (with x = l =  0) 

m 

m=l 
G(0, y; 0 , ~ ;  h) = - &,(O, y; 0 , ~ ;  h) - i G A  COShK(y+ h), (4.7) 

where (4.8) 

For moderate values of the non-dimensional parameter vh, as n+ co it  can be shown 
that 

&, = P, cos m,( y + h) . 

nm 
h 

m, +- + O(n-’), 

so that, as n -+ 00, 

We now consider the behaviour of 

(4.9) 

(4.10) 

(4.11) 
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This series is only slowly convergent. Because of this 'the expansion (4.4) for G is 
also slowly convergent. It is possible, however, to evaluate R(0, y; 0 , ~ ;  h) exactly. We 

= R,(O, y; 0,r; h) + R,(O, y; 0,r; h). (4.13) 

We consider only the second series R, (the first is almost the same). We put 

Y = n/h(y-q). 

R,(O,Y;O,T;h) = +n 2 -. cosny Then R, is given by 

,=I  n 

(4.14) 

(4.15) 

This series may be summed immediately (see Abramowitz & Stegun, 1964), so that 

7l 
(4.16) 

1 
R2(0,y;0,7;h) = --log2sin-ly-nl. 

2n 2h 

A similar expression may be derived for R,. Once an exact expression for R has been 
determined we are immediately in a position to reorganize the Green's function (4.7) 
so that it may be efficiently computed. We write 

aJ 

G(O,y; 0 , ~ ;  h)  = -iGA coshK(y+h) - 2 (Q,- Q:) - R(O,y; 0 , ~ ;  h). (4.17) 
n= 1 

Since as n becomes larger Q, -+ Q: the summation in (4.17) is highly convergent. 
Because of this, very few terms will give a good approximation, It should be remem- 
bered, however, that this method does not overcome the problem of slow convergence 
for large values of the parameter vh (i.e. for very short waves), since then the appro- 
ximation (4.9) does not hold until n becomes large. This sort of problem is, of course, 
also present when the standard representations (4.1) and (4.7) are used. This is a 
separate problem in evaluating these Green's functions, and as yet no simple method 
has been found to overcome it. 

It should not be noted that the above procedure can also be applied when x and/or 
6 are non-zero. Reference should be made to Macaskill (1977) for details. 

At this stage, some comparison of (4.17) and (4.7) is in order. In  table 1 we show the 
results obtained with the two methods for various numbers of terms in the infinite 
series. As can be seen, (4.17) is markedly superior. The table also shows that the 
efficiency of either method degrades as the parameter vh increases. 

Using (4.4), we may now determine the elements Ai j .  
We require 

I = G(0, y; 097; h) dY, (4.18) 

where 7 may take any value. If we carry out a direct integration on equation (4.4) 
substituting for the values of R, Q Z  and &, using (4.16), (4.10) and (4.8) respectively, 
we find 

-iG,/KsinhK(y+h)+ 2 Ln 

log 4 sin *  inn(^+' 2h) dy, (4.19) 
2h 2h 
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K h  

1 
1 
1 
1 

1 
1 
1 
1 

1 
1 
1 
1 

1 
1 
1 
1 

10 
10 
10 

New method Series 
K Y  K11 No. of terms Re G Re G 

- 0.35 - 0.4 10 -0.1851856 - 0.256 8542 
- 0.35 - 0.4 100 -0.1850087 -0.1840531 
- 0.35 - 0.4 1000 -0.1850087 -0.1851612 
- 0.35 - 0.4 10000 -0.1850087 -0.1850253 

- 0.35 - 0.95 10 0.1496019 0.149 7054 
- 0.35 - 0.95 100 0.149 5876 0.148 007 1 
- 0.35 - 0.95 1000 0-149 5876 0.1494285 
- 0.35 - 0.95 10000 0.1495876 0.149 57 17 

- 0.96 - 0.95 10 - 0'823 0905 - 0.7548512 
- 0.96 - 0.95 100 - 0.823 0853 - 0.833 4187 
- 0.96 - 0.95 1000 - 0'823 0851 - 0.8230820 
- 0.96 - 0.95 10000 - 0.823 0851 - 0.823 0994 

- 0.05 - 0.06 10 - 0.705 0828 - 0.605 6878 
- 0.05 - 0.06 100 - 0'706 8106 - 0.717 0789 
- 0.05 - 0.06 1000 - 0.706 8104 - 0.706 8079 
- 0.05 - 0.06 10 000 - 0.706 8104 - 0.706 8247 

- 5  -6 10 - 0.389 2591 - 0.3856073 
- 5  -6 100 - 0'393 5326 - 0'3949584 
- 5  -6 1000 - 0'393 5325 - 0.393 6899 

TABLE 1. The improvement in calculating Green's function for z = 0 
over numerical summation of the standard series. 

h nr nr 
h 

Ln = P,/m,sinm,(y+h)--sin-(y+h)cos- ( r+h) .  where 
n2n2 h 

(4.20) 

These calculations were performed on a CDC 6400 computer. It was found that the 
reflexion coefficient could be determined to three decimal place accuracy with a twenty- 
point mesh for values of non-dimensional frequency uh up to about five. With this 
number of points approximately three seconds was required to set up the matrix and 
two to invert it.  As the number of mesh points was increased (e.g. to deal with many 
gap problems or to look at high frequency limits) it was found that a higher percentage 
of time was spent on the matrix inversion. Thus a forty-point calculation took about 
twenty-five seconds, only half of this time being used to set up the matrix. For problems 
of infinite depth, set-up time was generally less than matrix inversion time. For a 
forty-point mesh, core required was approximately 25 kilowords. 

5. Results 
We consider first problems of the type described by equation (2.18). Any results 

given for infinite depth were computed using the infinite depth Green's function, as 
given in (3.18), in preference to using the finite depth Green's function with a large 
depth parameter. 

The first set of curves is for flow past a surface-piercing barrier of height 1 in water 
depth h. This is the problem first treated by Ursell(1947), for water of infinite depth. 
I n  figure 3 the transmission coefficient is plotted against vl. The present work agrees 
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FIGVRE 3. Transmission coefficient for a surface-piercing barrier. 
--, Ursell (1947), Z/h = 0; --, Mei & Black (1969), E/h = 0.5. 
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FIGURE 4. Reflexion coefficient for a single barrier reaching partway to the surface 

in water of finite depth. ---, Mei & Black (1969). 

very well with Ursell’s results - the two results are indistinguishable on the scale shown. 
When the depth is finite, certain interesting trends become apparent. 

As Z/h becomes larger, the opening closes off more and more - this is indicated by a 
general reduction in the transmission coefficient. For values of Z/h in the range 0.5-0.7 
it can be seen, by contrast, that the transmission coefficient is actually higher than 
Ursell’s results for waves of moderate frequency. At high frequency, however, all 
curves collapse on to the infinite depth result. 

For Z/h = 0.5 a result due to Mei & Black (1969) is shown. A t  low frequency, there 
is some small disparity with the present work. A t  high frequency, however, the two 
curves both collapse on to the infinite-depth result. 

In  fact, although it is not shown in figure 3, the result of Mei & Black for 1/h = 0 
shows good agreement with both the present results and with the theory of Ursell. 

In  figure 4 results are displayed for the situation where there is a single vertical 
barrier extending from the bottom partway to the surface. This is in a sense comple- 
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mentary to the surface-piercing barrier problem. Indeed, the analytic solution by 
Dean (1945)) for the case of infinite depth, appeared only a few years before Ursell’s 
paper. For convenience, we show the magnitude of the reflexion coefficient rather 
than that of the transmission coefficient. The present work again shows excellent 
agreement with Dean’s result and the answers obtained are essentially the same. For 
finite depth, extensive results have been given by Mei & Black (1969). As can be seen, 
the agreement between the two theories is very good over the whole range of fre- 
quency for all values of the parameter h lH.  It should be noted that the variational 
method used by Mei & Black (1969) becomes less accurate as h /H increases. This is 
because the method involves approximating an infinite series by taking the first few 
terms. The fact that  the disparities between the two methods become more marked as 
h / H  increases is probably a consequence of this, since the present method gives equally 
good accuracy for all h / H ,  a t  least at low frequency. That the variational method 
overestimates the reflexion coefficient seems to be borne out by the comparison with 
Dean (1945) for infinite depth. All in all, though, agreement is very good. 

We now turn to the problem of transmission through a single gap in a vertical wall. 
For infinite depth, this problem has been solved exactly by Porter (1972) and Guiney 
(1972), while an earlier theory by Tuck (1971) solves the problem when the gap is 
small. I n  this case, it is convenient to define a parameter ,u = 2a/H where 2a is the 
gap width and H the mean depth of the gap. It was found that over the full frequency 
range, a t  any value of p, excellent agreement was obtained with the exact theory of 
Guiney. The results of Porter appear to be the same. Since both exact methods require 
a large amount of numerical integration to obtain final answers, it is possible that the 
present method is preferable for these problems, since good accuracy can be obtained 
rapidly and easily, and the present method is more flexible. 

For flow through a single gap in finite depth, there are no published results for 
arbitrary p. However, for small gaps, both Tuck (1975) and Packham & Williams 
( 1  972) have obtained solutions that agree very well. Comparison of Tuck’s result with 
the present work, a t  ,u = 0.15, showed almost exact agreement, even at high frequency. 
This indicates that  the small-gap theory is very good for ,u of this order. For complete- 
ness, results obtained by the present method are displayed in figure 5 for p = 0.15. 
As has been said, however, the results are for all practical purposes identical with those 
published elsewhere. Unfortunately, no small-gap results are available for larger p. 
It is quite likely that the small-gap approach would be successful for quite large p, 
especially a t  low frequency. (Surprisingly good agreement has been demonstrated for 
infinite depth (see, e.g., Tuck, 1975). 

I n  figures 6 and 7 the magnitude of the transmission coefficient is plotted for various 
values of H l h  with ,u = 0.5 and 1.0 respectively. As can be seen, no qualitative change 
from the small gap problem is apparent. In  a quantitative sense, transmission in- 
creases as the gap becomes bigger, as might be expected. 

We now turn to flow problems with more than one gap. For simplicity, only infinite 
depth results are presented, although the method works just as well for finite depth. 
Both gaps are assumed to be of width 2a, with their centres separated by a distance b. 
I n  figures 8 and 9 the transmission coefficient is plotted for various values of b / H ,  
where H is the mean depth of submersion of the upper gap. The limiting curve b/H = 1 
corresponds to the two gaps being side by side, so forming a single gap of width 4a. 
Thus the results obtained should be the same as for a single gap with p = 2. This in 
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FIGURE 5. Water wave transmission through a single-gap barrier 
in water of finite depth (p  = 2a/H = 0-15). 
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FIGURE 6. Water wave transmission through a single-gap barrier in water of finite 

depth ( p  = 2a/H = 0.5). H ,  a and h as defined on figure 5. 
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FIQURE 7. Water wave transmission through a single-gap barrier in water 
of finite depth ( p  = 2a/H = 1.0). H ,  a and h a m  defined on figure 5 .  
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FIGURE 8. Water wave transmission through a two-gap barrier 
in water of infinite depth (y  = 1.0). ---, single-gap result. 
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FIQVRE 9. Water wave transmission through a two-gap barrier in water of infinite depth ( y  = 0.2) .  
--L , the small gap theory of Tuck (1976). H ,  a and b are defined on figure 8. 

fact turns out to be the case, with the results agreeing exactly with those obtained for 
the single-gap problem. We now increase the value of b/H.  This corresponds to holding 
the top gap in place while moving the bottom one down. At low frequency, the in- 
coming wave appears to see less impedance than would be the case if there were no 
interaction effects. Thus the transmission coefficient is larger than for the b/H = 1 
curve. At higher frequency this is no longer true and in fact the transmission coefficient 
is smaller than the b/H = 1 value. This is probably because short waves are confined 
to a thin surface layer and so cannot 'feel' the deeply submerged bottom gap. As 
b/H becomes larger it is interesting to note that a definite peak becomes apparent in 
the transmission coefficient, a t  .reasonably low frequency. This indicates that some 
sort of resonance effect is taking place owing to the interaction of the flow with the 
two gaps. It is possible that in many-gap problems we might obtain a large number 
of peaks of this form, although this has not been checked. 
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FIGURE 10. Transmission coefficient for a semi-permeable barrier. 
Large h corresponds to low porosity. 

As b / H  becomes very large, we expect the transmission coefficient curve to collapse 
down to that for a single gap of width 2a, since the waves on the surface are not 
affected by the deeply submerged lower gap. Indeed this is so and we see that, for 
values of VH greater than 0.1, the b / H  = 50 curve agrees with that €or a single gap 
wi thp  = 1.0. 

For small gaps, Tuck (1975) has postulated that an array of gaps may be regarded 
in the far field as a single gap, of suitable width, if the gap separation and gap width 
are small compared to the mean depth of submersion of the array. This theory was 
tested in figure 9 for two holes of equal width with p = 0.2. Tuck (1975) predicts that 
the effective gap width of the two gaps is ( a z  - a2)i. Using this result in his single-gap 
theory for small gaps we obtain the dotted line solution shown in figure 9. As can be 
seen, for small-gap separation, the agreement is very good, even a t  reasonably high 
frequency. 

For larger gap separation, however, the assumptions behind Tuck's (1975) theory 
break down and the agreement with the present work is less good. At low frequency, 
however, good agreement is still obtained, even a t  large separation. 

Finally, in figure 10, we consider a semi-permeable barrier which extends from the 
bottom partway to the surface (in the example shown, the breakwater has a height 
equal to 0.9h where h is the water depth). For this problem, the blockage coefficient 
C(y) is no longer infinite or zero. We take 

C(y) = h (---) 1 
1 

(h-y) O.9h 

so that the blockage coefficient is infinite a t  y = - h and decreases linearly to zero 
for I yI 6 0 . lh .  It should be noted that C(y) is assumed real here, so that no viscous 
dissipative effects are included. Such effects can be modelled by allowing C(y) to have 
a non-zero imaginary part. 

An increase in the parameter h corresponds to a decrease in the permeability of the 
barrier, i.e. the barrier will present a greater obstruction to the flow. This problem, 
therefore, may be regarded as a first approximation to reflexion of water waves by 
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a rock-fill breakwater. Since thickness effect.s are not included one would generally 
expect greater wave reflexion in a real breakwater. 

For every small A, one would expect only very low wave reflexion. This is borne 
out by the computer results. As h becomes larger, the transmission would be expected 
to decrease; this is indeed the situation. For large wave frequency, the transmission 
coefficient approaches unity. Again, this is to be expected, since very short waves are 
confined to a thin surface layer and so do not ‘feel’ the barrier. 
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